Go To Index
Unit 4: Factorization
Solved Exercise 4.4
1. Factorize the following:(i) b3 + 3b2c + 3bc2 + c3
Solution:
⇒ b3 + 3b2c + 3bc2 + c3
⇒ (b)3 + 3(b)2(c) + 3(b)(c)2 + (c)3
By using formula:
[∵ (a3 + 3a2b + 3ab2 + b3) = (a + b)3]
⇒ (b + c)3 Ans.
(ii) 8x3 + 12x2y + 6xy2 + y3
Solution:
⇒ 8x3 + 12x2y + 6xy2 + y3
(Rough Work: 8 = 2 x 2 x 2 = 23)
⇒ (2x)3 + 3(2x)2)(y) + 3(2x)(y)2 + (y)3
By using formula:
[∵ (a3 + 3a2b + 3ab2 + b3) = (a + b)3]
⇒ (2x + y)3 Ans.
(iv) 8x3 + 36x2 + 54x + 27
Solution:
⇒ 8x3 + 36x2 + 54x + 27
(Rough Work: 8 = 2 x 2 x 2 = 23 and 27 = 3 x 3 x 3 = 33)
⇒ (2x)3 + 3(2x)2)(3) + 3(2x)(3)2 + (3)3
By using formula:
[∵ (a3 + 3a2b + 3ab2 + b3) = (a + b)3]
⇒ (2x + 3)3 Ans.
2. Find The Factors Of:
(i) d3 - 6d2c + 12dc2 - 8c3
Solution:
⇒ d3 - 6d2c + 12dc2 - 8c3
(Rough Work: 8 = 2 x 2 x 2 = 23)
⇒ (d)3 + 3(d)2(-2c) + 3(d)(-2c)2 + (-2c)3⇒ (d)3 - 3(d)2(2c) + 3(d)(2c)2 - (2c)3
By using formula:
[∵ (a3 - 3a2b + 3ab2 - b3) = (a - b)3]
⇒ (d - 2c)3 Ans.
(vi) 125z3 - 75z2y2 + 15zy4 - y6
Solution:
⇒ 125z3 - 75z2y2 + 15zy4 - y6
Rough Work:
125 = 5 x 5 x 5 = 53
⇒ 53z3 - 75z2y2 + 15zy4 + (-y2)3125 = 5 x 5 x 5 = 53
⇒ (5z)3 + 3(5z)2)(-y2) + 3(5z)(-y2)2 + (-y2)3
By using formula:
[∵ (a3 - 3a2b + 3ab2 - b3) = (a - b)3]
⇒ (5z - y2)3 Ans.
No comments:
Post a Comment